

Cool Coalition Membership Coordination Call

October 2025

- Welcome and Opening Remarks
- Perspectives from the Cool Coalition Executive Steering Committee
- Flagship Implementation & Strategic Initiatives
- National and Regional Leadership in Action
- Guidelines, Tools, and Policy Alignment
- Finance, Data, and Delivery
- Strategic Engagement
- Closing Remarks

Welcome

Andrea Voigt
Vice-President, Global Public Affairs & Sustainability
Danfoss Climate Solutions

Graeme Maidment
Technical Lead, Cooling
UK Department for Energy Security and Net-Zero

Opening Remarks

Lily RiahiHead of Secretariat
UNEP Cool Coalition

Perspectives from the Cool Coalition Executive Steering Committee

Private Sector Mobilization: Progress and Opportunities

Andrea Voigt

Vice-President, Global Public Affairs & Sustainability Danfoss Climate Solutions

Driving Cooling Action from the UK: Policy and Technical Insights

Graeme Maidment

Technical Lead, Cooling
UK Department for Energy Security and Net-Zero

Flagship Implementation & Strategic Initiatives

Beat the Heat: the UNEP/COP30 Implementation Drive

Dr Eleni "Lenio" Myrivili
Global Chief Heat Officer
UNEP/Atlantic Council

Beat the Heat flagship implementation Drive – A *mutirão* **against extreme heat COP30 Presidency & UNEP**

Countries call on cities to join and work with national governments and partner organizations in a multi-level effort to:

Conduct urban heat island assessments and prepare action plans

2 Implement nature-based solutions, and passive cooling projects

Procure low-GWP and highefficiency cooling technologies; design building codes.

Role of Partners

2. Invite cities to join

Co-develop/Join/Contribute to the implementation drive

Policy Tools and Knowledge

Technical Support

Financing

- Deployment of heat assessment tools
- Support for the development of **Heat Plans**
- Capacity building and training

- Technical Assistance on nature-based and passive cooling projects
- Sustainable public procurement
- Project pipeline development

- Financial Contributions
- Creation of grants, lending lines, bonds, or other
- financial tools

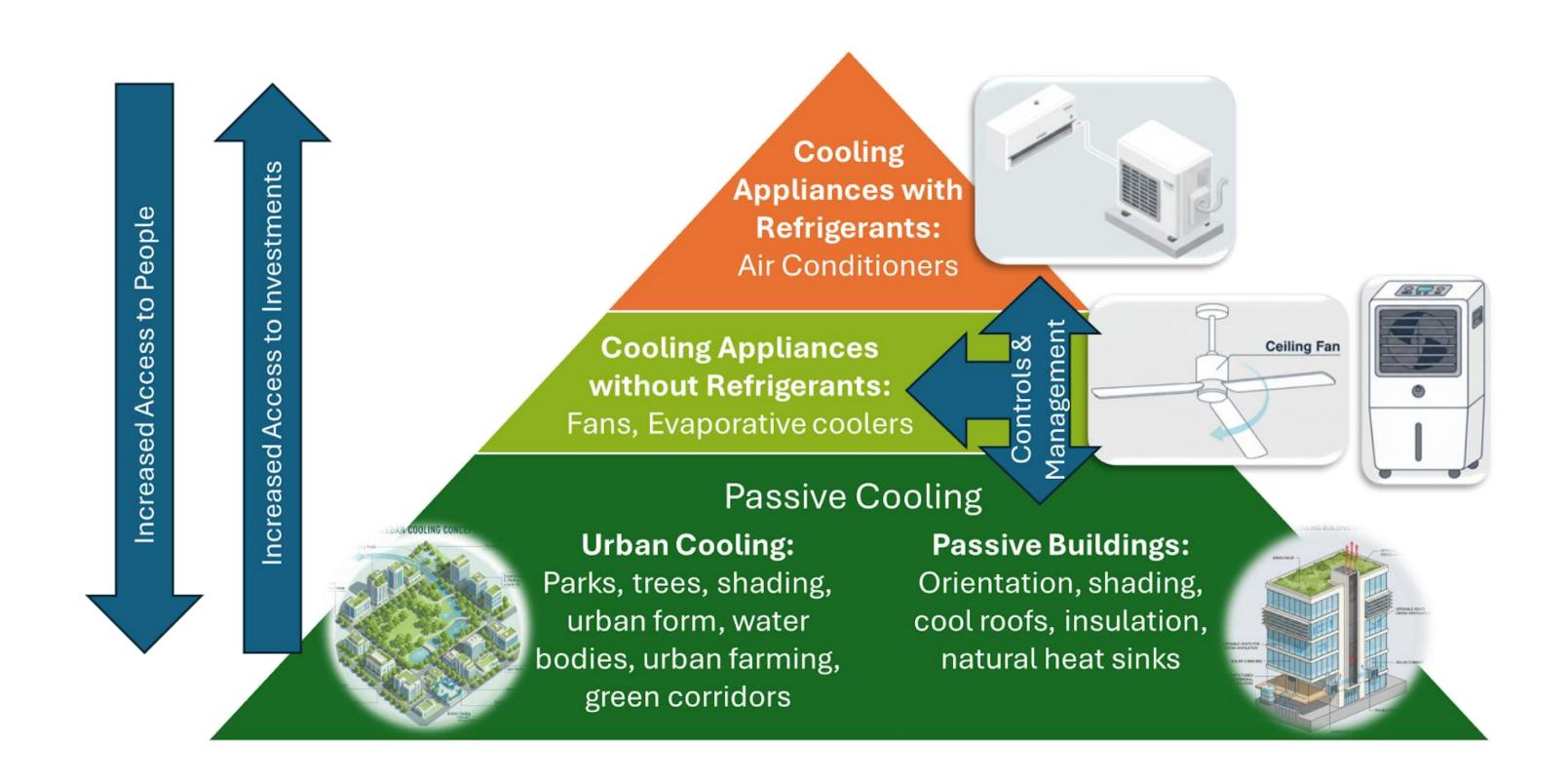
Beat the Heat Process

- Welcome package and onboarding sessions on Beat the Heat & support available
- Capacity-building webinars on heat assessment & planning tools

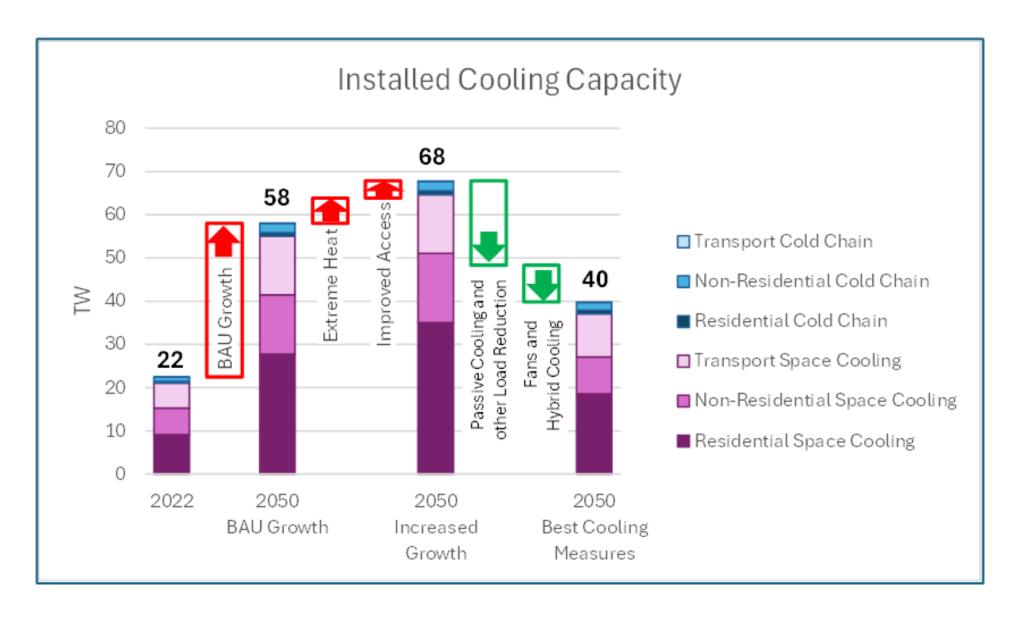
- Connect city-country EPIC requests with partners for implementation support
- Collaborative financing to further support cities

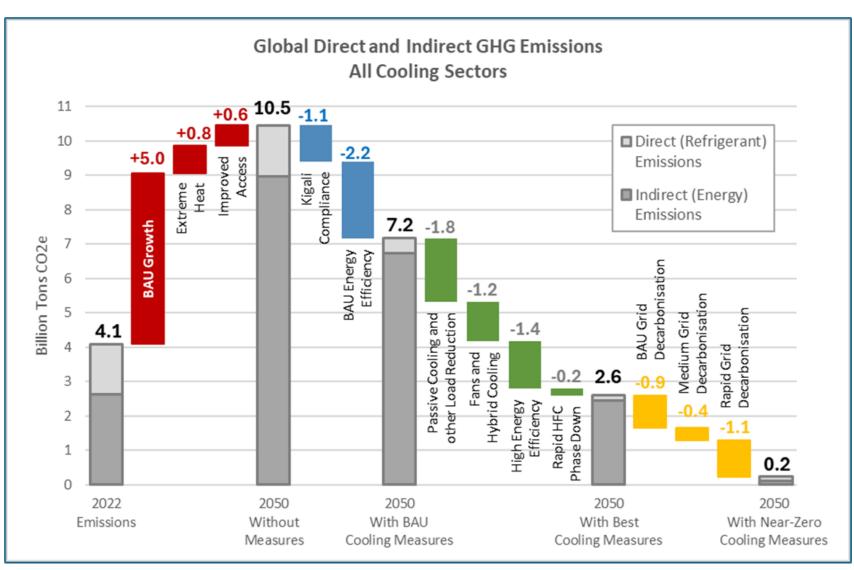
Submit through Enabling
 Pledge Implementation for
 Cooling Facility (EPIC)

 Report, showcase, share at the Annual Cooling Ministerial at COP.

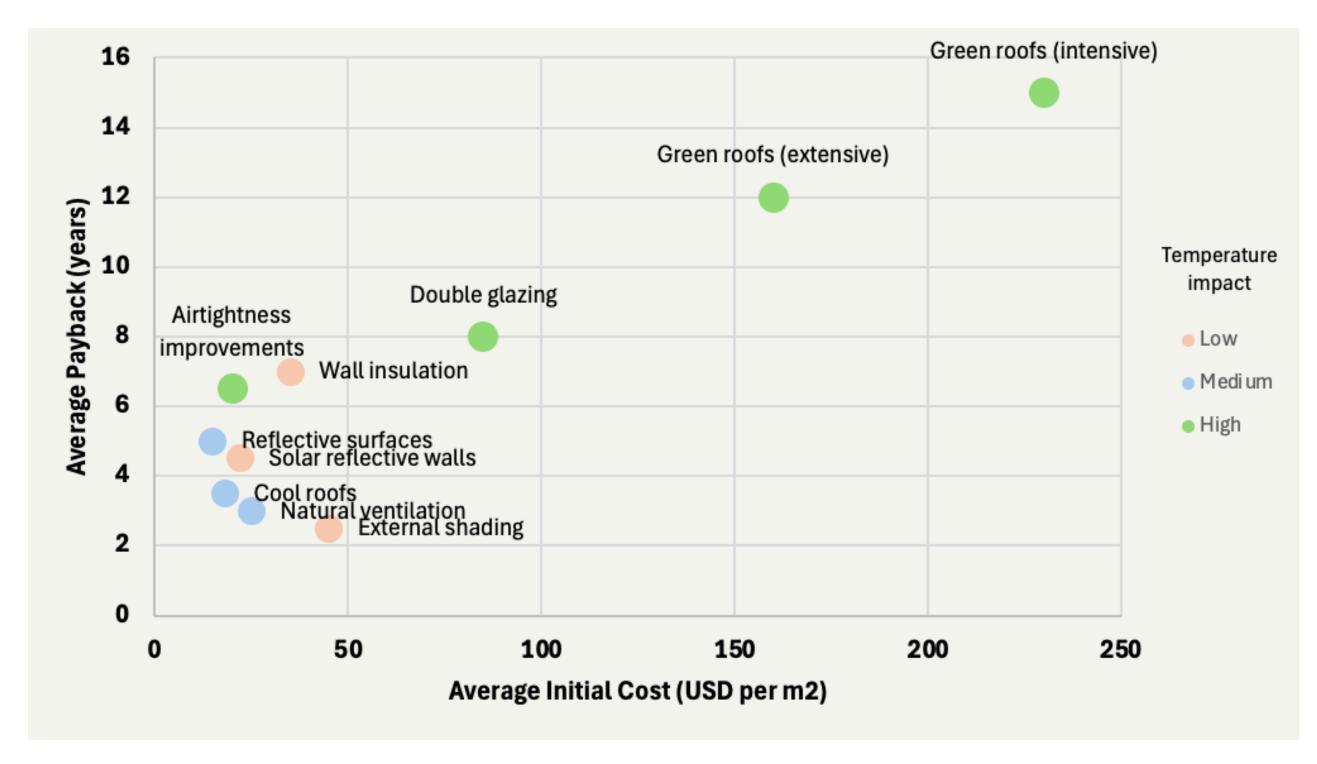

Global Cooling Watch 2025: Previewing Insights Ahead of COP30 Launch

Dr Omar Abdelaziz


Associate Professor American University in Cairo



The Cooling Hierarchy


Global pathway and key steps to achieve near-zero GHG emissions from cooling, 2022-2050

Cost-benefit analysis of passive cooling strategies showing initial investment versus payback

period

National and Regional Leadership in Action

Urban Cooling Action in Viet Nam: A Regional Model for Implementation

Nguyen Dang Thu Cuc

National Ozone Coordinator Viet Nam Ministry of Natural Resources and Environment

DEPARTMENT OF AGRICULTURE AND ENVIRONMENT OF CAN THO CITY

Action Plan Report on Urban Cooling for Can Tho city

Supported by

Urban Cooling Action in Viet Nam: A Regional Model for Implementation

Viet Nam is pioneering integrated urban cooling strategies that reduce heat risks, cut emissions, and strengthen urban resilience, offering a regional model for Southeast Asia.

Global Urban Heat Challenge

- Cities worldwide face unprecedented heat due to climate change and the Urban Heat Island effect, posing significant health, energy, and environmental challenges.
- ☐ Understanding these dynamics is crucial for developing effective cooling strategies.

Requirement for adoption of urban cooling, urban heat mitigation and cooling measures in related fields

Urban cooling promotion and Urban heat island mitigation as a key requirement in National plan on management and elimination of Controlled ODSs and GHGs

(with inputs from National Green Cooling Action Plan, focusing on both active and passive cooling solutions).

2024

2025 -

Decree 119/QD-TTg

For the first time, term 'sustainable cooling' has been incorporated into regulatory provisions

Outcome

Nation-wide impact and implementation of sustainable cooling in provincial design and planning at all levels

ENVIRONMENTAL PROTECTION LAW (Decree 06/2022, Circular 01/2022)

Law 72/2020/QH14

2020

Initial proposal of Sustainable Urban Cooling in Viet Nam's cities

Initial concrete basis for the adoption of

urban cooling in urban development

National Climate Change Strategy to 2050.

Part in updated NDC

A requirement for action in

Sustainable cooling:

2022;

Participation of Viet Nam in Global Cooling Pledge - COP 28

Governmental commitment to joint actions to address sustainable cooling

initiative

August - 2025

Strategic Partnership

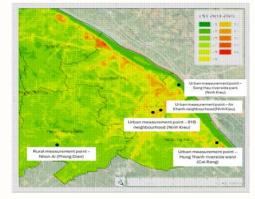
Collaborative initiative between DCC, UNEP, and GGGI to develop comprehensive urban cooling strategies.

Pilot Cities

Supporting Can Tho and Tam Ky cities as demonstration sites for integrated urban cooling approaches, providing scalable models for other Vietnamese cities.

UCAP Development

Preparing **UCAPs** that integrate cooling and heat resilience strategies directly into official city masterplans for long-term implementation.


Can Tho and Tam Ky: ASEAN's First Comprehensive UCAP

Can Tho, recognized as the first city in ASEAN to develop a comprehensive UCAP, showcases an integrated methodology for UHI mitigation and energy efficiency.

Tam Ky demonstrates a replicable model for sustainable cooling in **medium-sized cities**, focusing on local context and cost-effective solutions that can be scaled across other non-megacity urban centers in Vietnam.

Methodology

A multi-stakeholder approach involving local government, climate experts, and community members in data collection, vulnerability assessment, and strategy formulation.

Observed ambient air temperature (°C) – Can Tho - June 2023 Observed ambient air temperature

Implementation Details

- ☐ City-level: creation of ventilation corridors, expansion of urban greenery, restoration of water bodies, use of reflective and permeable surfaces.
- Neighborhood-level: increased shading from trees, community parks, and passive urban design (e.g., street orientation for airflow).
- **Building-level:** cool roofs, improved insulation, natural ventilation, and deployment of high-efficiency cooling systems.

Strategic Next Steps

01

NDC 3.0 Integration

Elevate passive cooling measures as core components of net-zero 2050 strategy, ensuring cooling solutions contribute to national climate targets.

02

Mainstream Implementation

Update urban planning regulations, building codes, and heat-risk indicators whilst ensuring inter-ministerial coordination for policy coherence across sectors.

03

Monitoring & Finance

Require regular monitoring and public reporting aligned with Global Cooling Pledge targets, develop green financing tools including bonds and blended funds, and create capacity-building programmes.

04

Partnership Expansion

Launch private sector pilots for Cooling-as-a-Service models whilst strengthening international partnerships for technology transfer and expertise sharing.

Cold Chain Innovation: UK-Haryana Centre of Excellence

Anant Shukla

Lead Expert
UNEP United for Efficiency

Global Hunger Index

India ranks 105th in the GHI 2024

13.7 % population undernourished, 35.5 % children under 5 are stunted 18.7 % children under 5 are wasted 2.9 % children die before age 5

Image: https://www.dawn.com/news/655689/fruit-and-vegetables-rot-as-hunger-stalks-india

Only 10 % of India's perishable food moves through cold-chain vs. 80 % in developed world

Image: Internet

Agriculture sector contributes 17 % to the GDP Only 1 % is exported and 99 % consumed within

Image: Dr. Anant Shukla

The CoE-SPMCC

The CoE on Sustainable Crop Post-harvest Management and Cold-Chain is a pioneering initiative dedicated to transforming India's food cold-chain

The CoE – hub for innovation, capacity building, business model development, R&D, testing & certification, among others By combining cutting-edge systems of system approach the CoE empowers farmers, entrepreneurs, and supply chain

stakeholders towards food security and climate resilience

Department of Horticulture, the leading govt institution

Department of Horticulture, the leading govt institution setting up the CoE-SPMCC in Haryana

United for Efficiency (U4E), UNEP is overall programme manager: management and roll-out of the physical facilities

University of Birmingham and its academic and technical expert, lead the designing and developing the programme, training, models, research strategies, toolkits, models, business models, and knowledge development, among others

MoU extension between University of Birmingham and Government of Haryana

Layout of facilities at the CoE-SPMCC

State-of-the-art in-market technology test and demonstration

Off-grid community cooling hub and test facilities

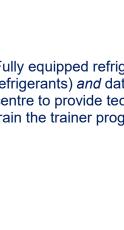
Fully equipped refrigeration (incl. refrigerants) and data training centre to provide technical skills, train the trainer programmes, etc.

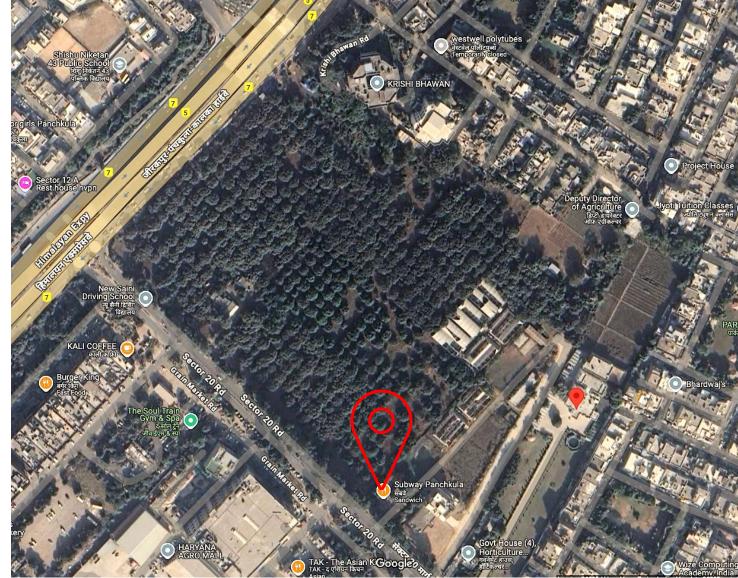
Energy-efficient refrigeration system using low-GWP and natural refrigerants, and nonconventional systems for precooling or thermal storage

Data telemetrics and training centre to provide tech. skills

Cold-chain, processing and storage facilities for post-harvest, PHM station, and modern/model pack house

Business hub to provide ecosystem and incubation, training and support for early-stage technology companies to accelerate market and scale up their businesses

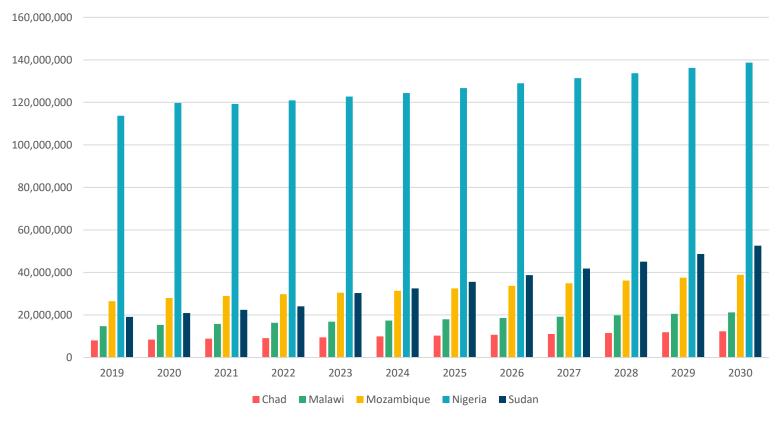


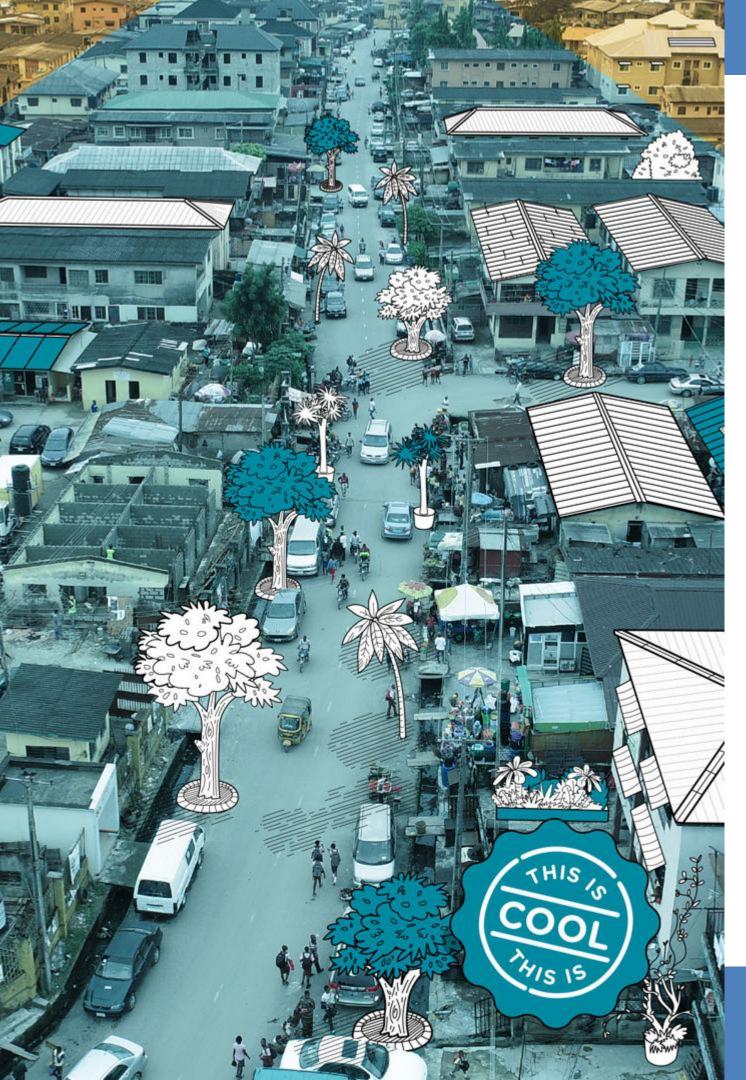

Conference facilities, classrooms and other administrative departments

Energy Access and Cooling: Urban-Rural Nexus and Regional Cooperation

Ben Hartley

Programme Manager, Cooling for All Sustainable Energy for All


Background


- Electricity access gaps in Sub-Saharan Africa are persistent. Approximately 565 million people in the region do not have access to basic electricity, including over 400 million in rural areas.
- Energy access does not end energy poverty. Most cooling applications require MTF Tier 2 or higher levels of service to operate reliably.
- Even with reliable electricity, cooling solution availability and affordability are **key challenges** for those living in poverty.

		TIER 0	TIER 1	TIER 2	TIER 3	TIER 4	TIER 5
TIER CRITERIA			Task lighting and phone charging	Task lighting, phone charging, television and fan	Tier 2 and any medium- power appliance	Tier 3 and any high- power appliance	Tier 4 and very high- power appliance
PEAK CAPACITY	Power capacity ratings (in W or daily wh)		Min 3 W	Min 50 W	Min 200 W	Min 800 W	Min 2 kW
			Min 12 Wh	Min 200 Wh	Min 1.0 kWh	Min 3.4 kWh	Min 8.2 W
AVAILABILITY	Hours per day		Min 4 hrs	Min 4 hrs	Min 8 hrs	Min 16 hrs	Min 23 hrs
	Hours per evening		Min 1 hr	Min 2 hr	Min 3 hr	Min 4 hrs	Min 4 hrs
FANS							
REFRIGERATORS							
REFRIGERATOR- FREEZERS							
AIR COOLERS							
ACS							

- Over 400 million people in Africa are at high risk due to a lack of access to cooling.
- Cooling access risks are closely tied to electricity access in high temperature areas. Without progress, these risks will grow in Sub-Saharan Africa.

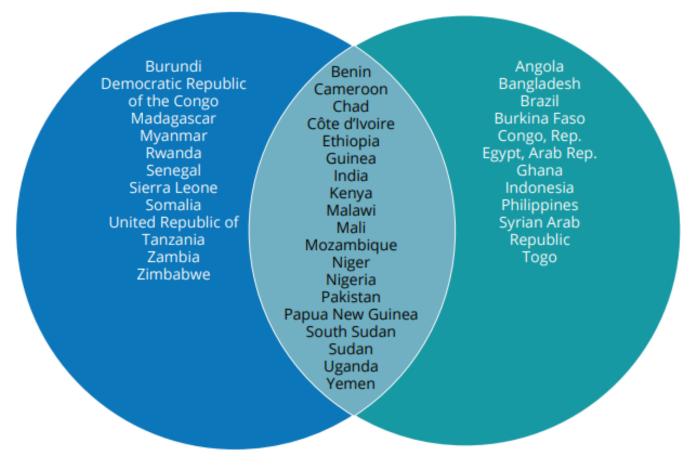
High Risk Due to a Lack of Access to Cooling in Sub-Saharan African Countries **With Significant Energy Access Gaps**

Urban Cooling & Energy Access

The Urban Poor may have access to electricity, but **service levels and reliability are limited.** Poor quality housing also reduces their ability to protect themselves from heat.

Key Opportunities

- Passive cooling can reduce energy poverty by reducing the need for active cooling and improving grid stability during peak demand.
- **High efficiency fans,** both grid based and standalone, can improve the reliability of cooling at lower electricity service levels
- **Community cooling resources,** such as schools and hospitals, can provide support during heatwaves, reducing peak demand.


Rural Cooling & Energy Access

The Rural Poor lack access to electricity and live in extreme poverty. Many are likely to engage in subsistence farming but lack access to cold chains. There may also be a lack of medical cold chains in rural poor communities.

Key Opportunities

- Elevating cooling within key energy access initiatives, including Mission 300 (AfDB, World Bank, GEAPP, Rockefeller, SEforALL)
- Integrating cooling into rural electrification strategies and capacity building with rural electrification agencies
- Generating evidence on the impact of cooling solutions for the productive use of energy and rural economic development
- Improve access to finance and affordability through risk-sharing, results-based financing, servitization, among others
- Collaborate with stakeholders supporting energy access across cooling sectors, e.g. WFP, FAO, UNICEF, WHO

19 countries are categorized as High-Risk for both rural electricity and cooling access

Market Pricing for Commercially Available Off-grid Rural Cooling Technologies

SECTOR	APPLIANCE TYPE	SIZE	PRICE (US\$)	INDICATIVE SUPPLIERS	
Households/	Refrigerators or	<200 liters (L)	600-2,700	Devidayal, Koolboks, Palfridge, Sola-Run, Steca, SunDanzer, SureChill	
Enterprises	freezers, or variable- temperature units	200-400 L	1,200-3,500		
	(including a solar power and storage system)	>400 L	1,240-3,800		
Walk-in cold rooms (including a solar pow and storage system)		<5 metric tons	10,000-50,000	Ecozen, Fresh Box, InspriaFarms, Self Chill	
Space Cooling	Table fans	100-380 millimeters (mm)	8-61	d.light, Metropolitan,	
	Pedestal fans	320-650 mm	17-62	Royal, Solar Run, SunKing, Super Star, Tamoor, VersaDrives	
	Ceiling fans	1,000-1,400 mm	14-65		

Guidelines, Tools, and Policy Alignment

Passive Cooling Guidelines: A Global Framework

Dr Sanyogita Manu

Passive Cooling Specialist UNEP

Passive Cooling Guidelines: Purpose and Overview

Purpose & Audience

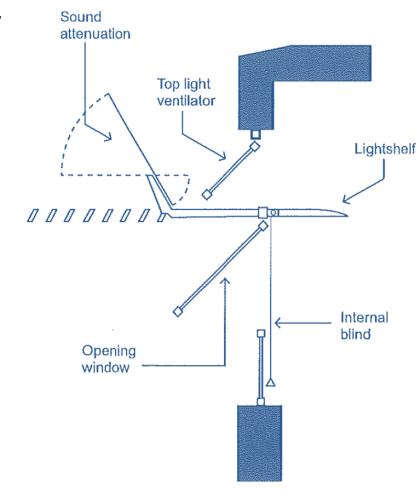
- <u>Policy-makers</u>: integrate passive cooling in building codes
- <u>Design practitioners</u>: drive on-ground implementation
- Focus: Tropical regions with year-round cooling demand
 - Urbanisation → rising energy use and CO₂ emissions

Structure:

- Chapter 1 Design & Operation of Passive Cooling Strategies
- Chapter 2 Performance Indicators & Climate Tools
- Chapter 3 Codes & Policy Guidance

Alignment & Progress

- Supports Global Cooling Pledge 2030
- Draft under review by Passive Cooling WG
- Soft launch @ COP30, then global webinar 2026
- Appreciation to WG experts and contributors


Chapter 1 at a Glance: Scope of Strategies

Neighborhood/ City **Building** Strategies arranged across four thematic categories and two spatial Orienting Streets to Reduce Heat Gain Orienting Buildings for Solar and Wind Optimization scales - connecting city form and Orientation Orienting Streets to Enhance Ventilation Designing Fenestration to Minimize Solar Gain and Maximize building detail. Daylighting and Air Movement Locating and Orienting Public Spaces for Comfort Designing Setbacks and Overhangs for Mutual Shading Installing Green, Cool, or Smart Roofs and Walls Applying Cool and Smart Surfaces in Public Spaces **Providing External Shading for Windows** Shading Streets with Vegetation and Built Structures Shading Buildings with Strategically Placed Trees **Shading and Surface Treatments** Providing Street Shading with Temporary or Fabric Structures Ensuring Daylight Access While Minimizing Solar Heat Gain Integrating Water Bodies for Microclimate Cooling Incorporating Parks and Urban Forests for Shading and Cooling Promoting Low-Rise, High-Density Urban Fabric Shaping Building Massing to Reduce Heat Gain and Enhance Ventilation Zoning Interior Spaces Based on Thermal Needs Designing Public Squares and Gardens for Cooling Integrating Blue-Green Infrastructure for Urban Heat Mitigation Designing Semi-Outdoor Thermal Buffer Spaces **Urban and Built Form** Enabling Cross Ventilation Through Building Layout Using Stack Ventilation for Vertical Air Movement Facilitating Night Cooling Through Operable Openings Enhancing Comfort with Passive Evaporative Cooling More than 20 strategies addressing Insulating Walls and Roofs to Reduce Heat Transfer solar control, ventilation, and Material and Using Thermal Mass to Moderate Indoor Temperatures material response in warm-humid Construction Designing High-Performance Windows and Glazing climates.

Inside a Strategy: Linking Design and Policy

Structure applied to every strategy

- What the strategy is
- How it works
- Common variations
- Implementation guidance
- Pitfalls to avoid
- Climate zone suitability
- Microclimatic considerations
- Synergies with other strategies
- Retrofit applicability
- Performance-oriented note for policy-makers

A contemporary example of a single opening designed to serve several functions: sun protection, ventilation, reflection of light for better distribution of daylight, and the reduction of noise transmission (Koch-Nielsen, 2013).

Koch-Nielsen, H. (2013) Stay Cool: A Design Guide for the Built Environment in Hot Climates. London: Routledge.

BEE (2024a) Energy Conservation and Sustainable Building Code (for Commercial and Office Buildings). New Delhi, India: Bureau of Energy Efficiency, p. 227.

Example – <u>Providing External Shading for Windows</u>

- Design Summary
 - Fixed or adjustable devices overhangs, fins, louvers, or vegetation – block direct solar radiation.
 - Reduces cooling loads & glare while maintaining daylight and ventilation.
 - Key design points:
 - Size for solar geometry
 - Use durable, reflective materials
 - · Integrate with window system.
 - Climate focus: Essential in hot-humid & hot-dry regions; combine with natural ventilation.

Policy Guidance

- Mandate solar-control metrics in codes, e.g., SHGC ≤ 0.25-0.62; U-factor 1.8-3.0 W/m²·K, (BEE, 2024).
- Provide credits/incentives for adaptive or dynamic shading.
- Integrate façade & urban-design provisions in planning rules.
- Support training and compliance programmes for inspectors & practitioners.

Passive Cooling Guidelines: Purpose and Overview

Purpose & Audience

- Policy-makers: integrate passive cooling in building codes
- Design practitioners: drive on-ground implementation
- Focus: <u>Tropical regions</u> with year-round cooling demand.
 - Urbanisation → rising energy use and CO₂ emissions

Structure:

- Chapter 1 Design & Operation of Passive Cooling Strategies
- Chapter 2 Performance Indicators & Climate Tools
- Chapter 3 Codes & Policy Guidance

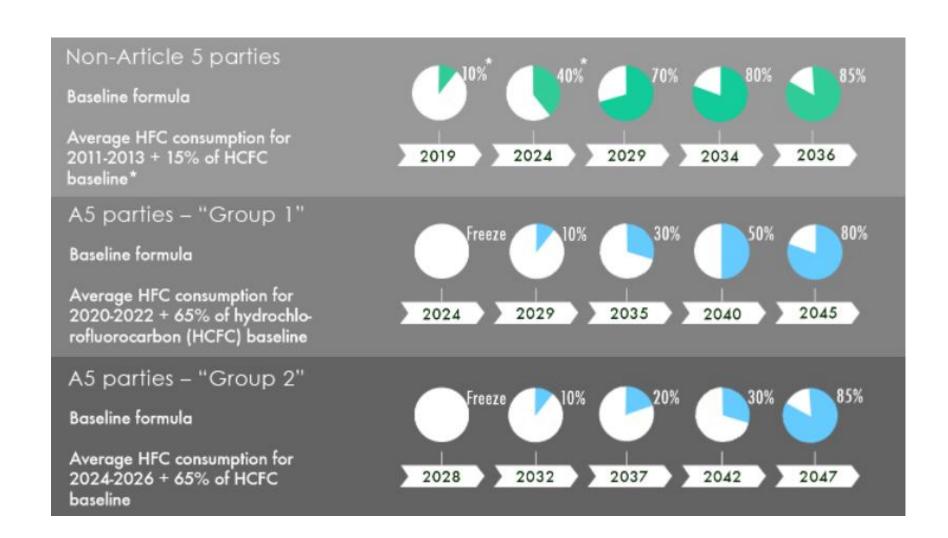
Alignment & Progress

- Supports Global Cooling Pledge 2030
- Draft under review by Passive Cooling WG
- Soft launch @ COP30, then global webinar 2026
- Appreciation to WG experts and contributors

Protocol Implementation & Policy Toolkit: Aligning with Kigali & National Action

Stephanie Egger Haysmith Communications and Information Officer Ozone Secretariat

Protocol Implementation & Policy Toolkit: Aligning with the Kigali Amendment & National Action


Kigali Amendment Implementation

Developed countries (non-Article 5)

- Timeline: Started reducing in 2019
- Targets: 85% reduction by 2036

Developing countries (Article 5)

- Timeline: Split into 2 groups with different starting points
- Group 1: Freezes consumption in 2024
- Group 2: Freezes consumption in 2028

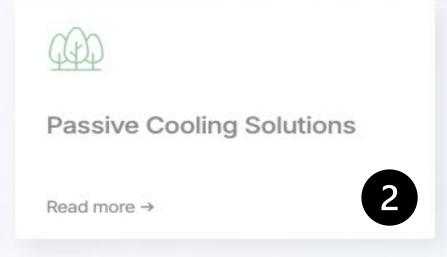
Adoption of energy efficient technology

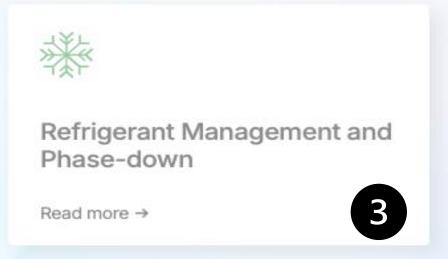
Linking the country's mandatory reduction obligations to the climate impacts of the HFCs used, the Kigali Amendment promotes the use of HFCs with lower global warming potentials, in particular, gases that have very low or no global warming potential

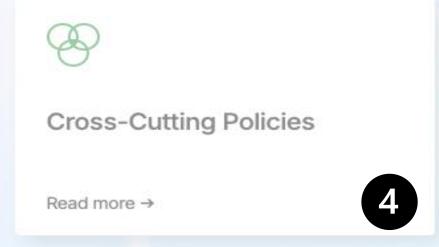
- Assist policy and implementing agencies
- Provide guidance on improving sustainability
- Provide the supply and adoption of energy efficient technologies, equipment and practices

The toolkit maps possible policy measures along the cooling sector value chain to help users:

- Manage and phase down high GWP refrigerants
- Enhance energy efficiency of cooling equipment
- Improve energy efficiency of building envelopes to reduce cooling loads
- Implement passive solutions to reduce the need for mechanical cooling



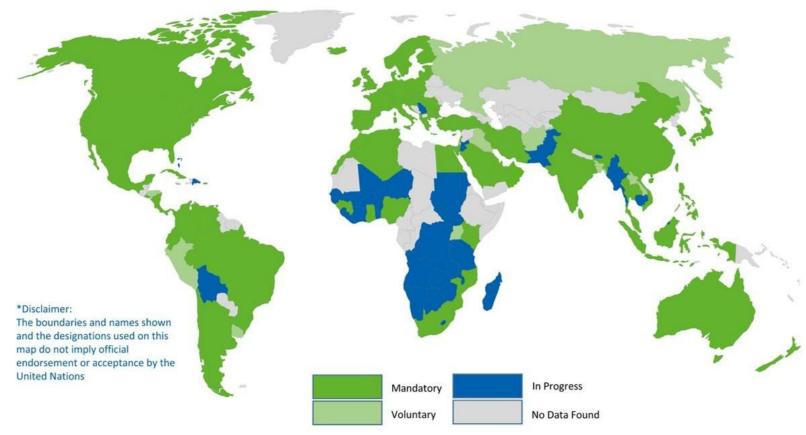



Key policy interventions:

1. Effective interventions to boost cooling efficiency include regulatory measures, marketing incentives and support for innovation

- 2. Leverage building design, urban planning and nature-based strategies to keep people cool without relying in energy-intensive air conditioning
- 3. Reducing the use and emission of high GWP refrigerants from manufacturing and handing of refrigerant through good servicing practices, leak prevention and end of life management
- 4. Overarching strategies and enabling measures that span across refrigerant management, equipment efficiency and passive solutions

Advancing MEPS and Green Procurement


Patrick Blake

Climate and Energy Manager UNEP United for Efficiency

U4E Updates on MEPS – Cooling Products

Status of Air Conditioner MEPS

NIGERIA

- ✓ Cooling targets integrated into Nigeria's NDC Implementation Framework.
- ✓ **MEPS approved in late 2024** by the SON Council **will be implemented in phases**, enhancing energy efficiency and transitioning refrigerant gasses used in the equipment.
- ✓ The phased approach will be implemented over time using the Nigeria Seasonal Energy Efficiency Ratio (NSEER), an international test method tailored for local weather conditions.
 - Current MEPS (2026): Minimum NSEER of 3.80–4.00 for most ACs
 - Dec 2029 MEPS Update: NSEER increases to 3.90–4.50
 - Dec 2031 MEPS Update: Further increase to 4.00–5.10

MALAYSIA

- ✓ Energy Efficiency and Conservation Act 2024 (EECA), gazetted on 26 November 2024 and in force on 1 January 2025, updated MEPS for RACs including CSPF at 4.1 in January 2026 and set to increase to 6.09 by 2030 (aligned with Regional Roadmap).
- ✓ Collaboration with local NGO and Energy Commission of Malaysia (EC) is underway on series of awareness raising activities to amplify a public campaign promoting high-efficiency RAC models and to disseminate information on the revised MEPS, scheduled for implementation in January 2026.
- ✓ **New project** MEPS for CRE is currently being developed, based on the U4E model regulation guidelines.

Building Upon Regional Initiatives – Aligned with Global Cooling Pledge Commitments

Southeast Asia (with ASEAN Centre for Energy) – Room Air Conditioner – Completed

Southern Africa (with SACREEE) – Room Air Conditioners and Residential Refrigerators – Completed

East Africa (with EACREE) – Room Air Conditioners and Residential Refrigerators – Completed

New Publication — Sustainable Procurement Guidelines for Air Conditioners and Air-to-Air Heat Pumps

Scope: The upcoming Guidelines will help **public and private procurement officers** integrate energy-efficient and climate-friendly criteria into purchasing processes for air conditioners and air-to-air reversible heat pumps. They will also support **policymakers** in developing sustainable procurement frameworks that encourage the uptake of high-performance, low-emission cooling technologies.

Methodology: The Guidelines are being developed through expert consultation and will be aligned with the upcoming 2025 **Model Regulation Guidelines (MRG)** for air conditioners. They will incorporate the latest technical standards and international best practices to ensure consistency across markets.

General content: Key criteria will cover energy efficiency, refrigerant choice, smart control features, and end-of-life management practices. The Guidelines will also highlight how sustainable procurement contributes to **SDGs 7, 12, and 13**.

How to use it? To be applied in tenders and policy design to accelerate adoption of sustainable cooling technologies.

New Publication — Sustainable Procurement Guidelines for Heating and Hot Water Systems Using Heat Pumps

Scope: The upcoming Guidelines will help **procurement officers and policymakers** integrate energy-efficient and climate-friendly heat pump systems for heating and hot water into public and private procurement processes.

Methodology: Developed through expert consultation and aligned with international best practices, the Guidelines will draw from IEA data and U4E modelling to promote early adoption and market transformation.

General content: Will include key criteria on system performance, refrigerant choice, smart controls, temperature requirements, and end-of-life management, while emphasizing life-cycle cost and emissions analysis. The Guidelines will also highlight links to **SDGs 7, 12, and 13**.

How to use it? To be used by procurement officers and policymakers to design tenders and frameworks that promote sustainable heat pump systems, accelerating decarbonization of heating and hot water supply.

Lifecycle Refrigerant Management: Closing the Loop on HFCs

Denise San Valentin

Programme Management Officer Climate & Clean Air Coalition

Finance, Data, and Delivery

Financing Cooling and Resilience

Saima Zuberi

Senior Consultant, Cooling and Eco-Industrial Parks International Finance Corporation

CREED:

Data to Inform Cooling Policy and Climate Action

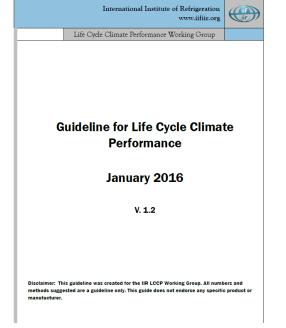
Souhir Al-Hammami

Director of Scientific and Technical Information International Institute of Refrigeration

Cooling Refrigeration Emissions and Energy Data WG

Aim – To work together to identify and evaluate gaps, existing resources, assumptions to enable countries to evaluate their cooling/ refrigeration emissions and energy consumption

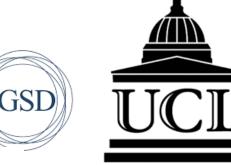
Objectives


- Bring together those working in this area,
- Assimilate methodologies, converge as much as possible in terminology/nomenclature for cooling/refrigeration related datasets,
- Collate/access assumptions/ datasets that exist at multiple levels of governance related to cooling/ refrigeration,
 mapping regional/sectoral data, market-based data available, as well as understanding assumptions behind the
 existing cooling related data globally,
- Work on alignment and developing agreement on indicators and metrics for data (and proxies where data not available) that can be used to measure progress in national strategies to reach near-zero emissions from cooling by 2050 (MEPS, building codes, Kigali implementation).

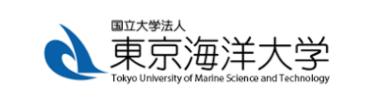
Work packages

WP no.	WP Description
WP1	To support the Global Cooling Pledge – to track quantifiable progress towards sustainable cooling with Pledge Countries and contribute to the Global Watch report.
WP2	
	To draw up and regularly update an inventory of existing databases/ studies/ data, Develop a harmonized categorization of cooling subsectors, Provide countries with a potential method, assumptions and parameters to be able to assess cooling and subsector emissions, Identify gaps in data and what's needed to fill. Country level + future scenarios
WP3	Investigate and develop proxies for estimation
WP4	To bring colleagues working in this area together, create a forum, communicating on activities. Disseminate findings and encourage countries to estimate emissions.
WP5	
	Update LCCP Guidelines (Guidelines for Life Cycle Climate Performance)

Carrier



& REFRIGERATION INSTITUTE



SCHILLINGS AIR



Strategic Engagement

COP30 Communications: Making Cooling Matter on the Global Stage

Marisofi Giannouli
Communications Lead
UNEP Cool Coalition

Cool Coalition COP30 engagements

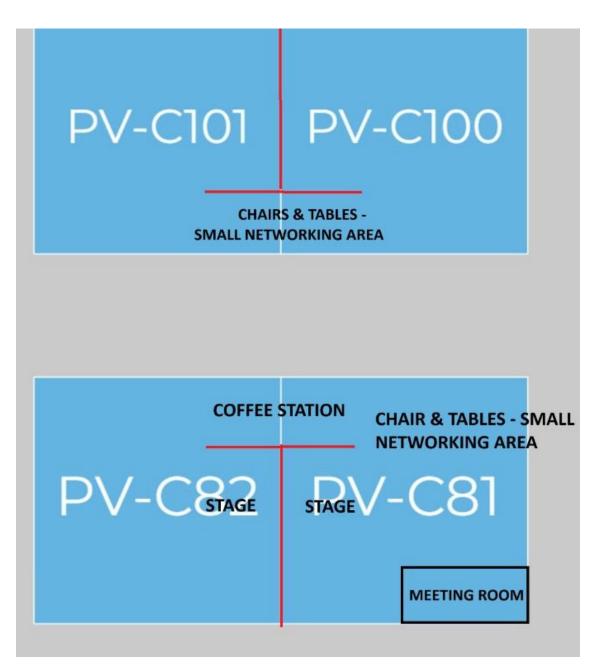
Global Cooling Pledge Ministerial Dialogue

- 18 November 2025
- 16:30 18:00 UTC-3 (TBC)
- COP30 Presidential Auditorium
- Followed by high-level networking event at the Singapore Pavilion (TBC)

Beat the Heat official launch event

- 11 November 2025
- 15:00-16:30 UTC-3
- COP30 Presidential Auditorium

Global Cooling Watch 2025 launch


- 10 November 2025 (TBC)
- COP30 Press Room

COP30 Buildings and Cooling Pavilion

- 10-21 November 2025
- Blue Zone
- Theme: Creating Resilient Communities with Sustainable Cooling, Better Buildings, and Smarter Materials
- 100 sq meters

Bairro do Mutirão Urbano

Cities & Regions Hub
ICLEI/UN Habitat/LGMA

Disaster Resilient Infrastructure Pavilion

Coalition for Disaster Resilient Infrastructure

Water For Climate Pavilion SIWI and partners

Buildings and Cooling PavilionGlobalABC/Cool Coalition

Scaling Local Solutions through District Cooling

Dimitris Karamitsos

Senior Energy Efficiency Business Developer Specialist Basel Agency for Sustainable Energy

District Cooling Working Group

The DC WG was created to address three key gaps identified through member surveys and discussions:

- 1. Insufficient awareness of district cooling solutions and their benefits.
- 2. Weak policy and regulatory environments to enable market growth.
- 3. Limited integration of district cooling within energy and urban planning frameworks.

By leveraging the Cool Coalition's global network, the group aims to serve as a neutral, multistakeholder platform connecting governments, cities, private sector actors, and experts to coordinate actions and share best practices.

Main Objectives and Expected Outcomes

Objectives & Top 4 Activities:

- Support the development of urban policies and planning frameworks that integrate district cooling.
- Raise awareness of district cooling among national and subnational governments.
- Identify and promote viable business models to attract investment and scale implementation.
- Enable cross-sector knowledge sharing and highlight success stories that can be replicated globally.

Expected outcomes:

- A publication summarizing lessons learned and case studies.
- A repository of best practices to help cities and policymakers replicate successful DC models.
- Greater advocacy and visibility for district cooling in global and local climate agendas.
- Stronger alignment with initiatives like the Global Cooling Pledge and NDCs.

How Members Can Join - Next Steps & Future Plans

Members can join or engage by:

- Contacting the Cool Coalition Secretariat (UNEP) or co-chairs (in the process of being finalised).
- Participating in bi-monthly calls and thematic discussions.
- Contributing case studies, data, or technical expertise to the working group's publications and events.
- · Collaborating on capacity-building activities or study tours to showcase successful district cooling systems.

Next steps and future plans

- Co-chair nominations have been received & will be approved in the coming days.
- The next WG call will take place in approximately two months.
- Initial focus will be on collecting and analysing success stories, identifying replicable enabling conditions, and preparing a joint publication.
- Future work will transition from knowledge sharing to implementation, supporting cities and national programs aiming to establish or expand district cooling initiatives.

Closing Remarks

Andrea Voigt
Vice-President, Global Public Affairs & Sustainability
Danfoss Climate Solutions

Graeme Maidment
Technical Lead, Cooling
UK Department for Energy Security and Net-Zero

coolcoalition.org

